The Pennsylvania State University
The Graduate School
Department of Educational and School Psychology and Special Education

EFFECT OF A SELF-EVALUATION CHECKLIST ON THE QUALITY
OF STUDENT TEACHERS' SCRIPTED LESSON PLANS

A Thesis in
Special Education
by
Denise M. Casciato

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

May, 2007
The thesis of Denise Casciato has been reviewed and approved* by the following:

Charles Hughes
Professor of Special Education
Chair of Committee
Thesis Adviser

David Lee
Associate Professor of Special Education
Professor-in-Charge of Graduate Programs in Special Education

John Mc Cool
Distinguished Professor of Systems Engineering

*Signatures are on file in the Graduate School
ABSTRACT

Effective instructional strategies allow students to become active learners who are able to practice newly learned skills to mastery (Englert, 1984; Hughes, 1998). One part of effective instruction consistently identified in the literature is prompting. The significance of prompting was also noted by Rosenshine (1995) who recommended that teachers needed to spend more time on this part of direct instruction for students to make academic gains. While it is difficult to ensure that effective teaching practices such as prompting will be used in the classroom, one solution may be to place an emphasis on effective instruction during the student teaching practicum. Student teaching experiences have long been considered an important component of teacher education programs (Sudzina & Knowles, 1993). One promising technique which can be used in student teaching is self-evaluation, a strategy in which the individual observes his/her behavior and rates it according to a predetermined scale (Hughes, Ruhl & Misra, 1989). For this study, a multiple baseline design across participants design was used to evaluate the effects of a self-evaluation checklist on the quality of student teachers' scripted lesson plans. The checklist contained a rubric comprised of nine areas which were summarized from the effective teaching research on guided practice/prompting. Those skill areas were as follows: (a) task analysis (b) prompt step replicates model (c) clarity of question or direction (d) students asked to perform skill, (e) students asked to explain answers, (f) fading of prompts), (h) non-examples and (i) minimal pairs. Student teachers rated themselves on a scale of 1-4 for each part of the scripted prompt step. All participants made gains in each area of the checklist. This study showed that teachers did improve in their ability to write scripted prompt lesson plans which followed a direct instruction format after being instructed in the use of a self-evaluation checklist.
TABLE OF CONTENTS

LIST OF TABLES ... v
LIST OF FIGURES ... vi
ACKNOWLEDGMENTS ... vii
Chapter 1. INTRODUCTION .. 1
Chapter 2. REVIEW OF RELATED LITERATURE .. 4
Chapter 3. METHODOLOGY ... 16
 Participants and Settings .. 16
 Dependent Variable ... 17
 Procedures .. 18
 Baseline Phase .. 18
 Intervention ... 19
 Experimental Design ... 20
 Interobserver Agreement Data ... 21
 Treatment Integrity ... 22
Chapter 4. RESULTS ... 26
Chapter 5. DISCUSSION .. 44
REFERENCES .. 51
Appendix A. PROMPT SELF EVALUATION CHECKLIST 61

Appendix B. DESCRIPTION OF PROMPT SELF-EVALUATION CHECKLIST ... 64

Appendix C. PROMPT SELF-EVALUATION SUMMARY SHEET 67

Appendix D. INFORMED CONSENT FORMS FOR RESEARCH STUDY 69
LIST OF TABLES

1. Percentage of Response-by-Response Agreement-Researcher/Outside Observer .. 24

2. Percentage of Response-by-Response Agreement-Researcher/Student Teacher .. 25

3. Summary Sheet of Participants Mean Scores and Range of Scores 27
LIST OF FIGURES

1. Overall Scores of Participants on Prompt Self-Evaluation Checklist 29

2. Task Analysis Scores of Participants on Prompt Self-Evaluation Checklist ... 30

3. Prompt Steps Replicate Model Scores of Participants on Prompt Self-Evaluation Checklist ... 32

4. Clarity of Questions/Directions Scores of Participants on Prompt Self-Evaluation Checklist ... 34

5. Students Asked to Perform Skill Scores of Participants on Prompt Self-Evaluation Checklist .. 35

6. Students Asked to Explain Answers Scores of Participants on Prompt Self-Evaluation Checklist .. 37

7. Fading of Prompts Scores of Participants on Prompt Self-Evaluation Checklist .. 38

8. Examples Scores of Participants on Prompt Self-Evaluation Checklist .. 40

9. Non-Examples Scores of Participants on Prompt Self-Evaluation Checklist .. 41

10. Minimal Pairs Score of Participants on Prompt Self-Evaluation Checklist .. 43
ACKNOWLEDGEMENTS

Thank you to everyone who helped me in this long journey. In particular, I would like to thank my committee. Your patience with me is unsurpassed. Dr. Charles Hughes is the consummate model of an effective educator. He is responsible for training many of the talented teachers I have been fortunate to work with over the years. I have long admired his commitment to the field of special education. Dr. David Lee has inspired all who work with him with his passion and dedication to the research which helps so many students with disabilities. He has been most generous with his time and wisdom. Dr. John McCool is distinguished in his intelligence and wit. I am privileged to know him. Dr. James McAfee taught the first special education course I took at Penn State. I remember being in awe of his breadth of knowledge then, as I am now.

I will always value Dr. Mary Catherine Scheeler as a lifelong friend, respected colleague, and my personal cheerleader. I am indebted to my former student teachers, my current teachers and my Norristown friends including Myra, Anita, Donna and Bill, and particularly, Pam and Cheryl, for their technical expertise. I am thankful for Kristie Bruno’s detective work in finding important pieces of research. I would also like to include a personal note of thanks to Dr. Edward Freed for his encouragement and astute feedback.

To my cousins, Christeen Fox and Mary Lou Cahill, my uncles Frank, Joseph, Kevin, Robert and my Aunt Claire, all of whom led significant lives- you are my heroes.
I am most grateful to my siblings, cousins, and my treasured nieces and nephews. They showed me how to teach and learn with compassion and humor. I can't imagine my life without them.

Finally, to my parents, Mary Ann and Carmen, who were my first and greatest teachers. You sustained our family through difficult times, quietly cheered our successes, and always motivated us to meet the next challenge. I will spend the rest of my life thanking you, and striving to honor all that you have done for me.
Chapter 1
INTRODUCTION

The principles of effective teaching have been well documented. In a review of the literature on effective instruction, Brophy & Good (1986) noted that effective teachers placed an emphasis on pace, academic engaged time, teacher-led instruction, and providing/soliciting/responding to information. Six teaching functions of effective instruction were identified by Rosenshine and Stevens (1986): daily review and checking homework, presentation, guided practice, correctives and feedback, independent practice, and weekly and monthly review. Ellis and Lenz (1999) found that students' rate of success was positively correlated to the amount of time they received direct instruction from the teacher. With the use of effective teaching practices, students become active learners who are able to practice newly learned skills to mastery (Englert, 1984; Hughes, 1998).

One part of effective instruction is prompting, also known as guided practice. Prompted practice occurs when the teacher guides students to perform a skill during the acquisition stage of learning, usually through verbal teacher questioning (Hughes, 1998). Good and Grous, (1979), Brophy & Good (1986) and Rosenshine and Stevens (1986) promoted the use of "prompt-practice-prove" to help students achieve. The significance of prompts was emphasized by Rosenshine (1995) who recommended that more time be spent on this step of instruction. He suggested that ineffective teachers tend to move from the model to check, often disregarding the prompt step. Without prompts, students were unable to complete academic tasks correctly, and made minimal progress. Prompts should allow the students to practice newly acquired skills correctly (Deshler & Schumaker, 1998; Englemann, 1980; Kameenui & Simmons, 1990), and should be systematically developed to promote errorless learning (Deshler & Schumaker, 1998). Errorless learning has been defined as an instructional procedure that uses prompts to
elicit only correct responses from students (Alberto and Troutman, 2003). Teachers are viewed as an integral part of the prompt step; it is the teacher's responsibility to construct and deliver effective prompts which guide the student from a passive to an active learner (Rosenshine, 1997).

Although the use of well designed instruction has been shown to have a positive effect on student performance (Brophy & Good, 1986), researchers continue to voice their concerns that these empirically validated practices are not being applied to the classroom (Gersten & Brengelman, 1996; Gersten, Vaughn, Deshler & Schiller, 1997; Rosenberg, 1996; Simpson, Whelan & Zabel, 1993; Wong, 1997). The goal of every educator should be to use effective instructional strategies to maximize levels of student achievement.

It is difficult to ensure that effective teaching practices such as prompting will be used in the classroom. One solution may be to place an emphasis on effective instruction during the student teaching practicum. Although student teaching is considered to be one of the most essential components of an undergraduate teacher training program (Sudzina & Knowles, 1993), there has been limited research in this area. For example, there is little longitudinal information about the impact of the cooperating teacher and the length of the practicum on later teaching performance (Buck, Morsink, Griffin, Hines & Lenk, 1992). Moreover, Lyon, Vaassen and Toomey (1989) found that general and special education teachers received little or no supervisory support during student teaching. The teachers in this study reported that lack of supervision had a negative effect on their ability to interact with, and learn from other faculty. Similarly, in a follow-up of first year special education teachers, Morsink, Blackhurst, and Williams (1979) stated that increased amount of supervision during student teaching resulted in higher job satisfaction. Supervision may be able to provide a link between best practices and the classroom for student teachers.
A variety of instructional methods can be used in the supervisory situation. One
promising technique which can be used in student teaching is self-evaluation, a self-
management strategy in which the individual observes his/her behavior and rates it
according to a predetermined scale (Hughes, Ruhl & Misra, 1989). Strong self-
management skills are essential for effective teaching, and teacher education programs
should provide specific guidelines to help educators analyze their skills (McDougal and
student teachers should move from a passive to active role in the evaluation process.
Techniques such as self-evaluation could increase independence for student teachers,
and therefore supplement more direct forms of supervision. With other populations, self-
management strategies have resulted in generalization to other settings (Misra, 1992).
This represents an appropriate shift for student teachers who will soon be novice teachers
without the support of the university supervisor and a cooperating teacher.

Perhaps the use of effective instructional strategies in the classroom can best be
controlled through carefully developed teacher education programs. Guyton and
McIntyre (1990) emphasized the need for teacher education programs where the
coursework and field experiences shared a conceptual framework. This study attempts to
follow the guidelines suggested by Guyton and McIntyre (1990) by assisting student
teachers in generalizing the effective teaching skills they have been taught in their
required classes to the student teaching setting. Since the participants in this study have
all had training in direct instruction, it is hoped they can use this knowledge, along with
self-evaluation, to improve the quality of the prompt step in their lesson plans.

This study will address the following question:

Does self-evaluation improve the quality of the prompt step in student teachers’
lesson plans?
Chapter 2

REVIEW OF RELATED LITERATURE

This chapter is a comprehensive review of the research on three main
topics: (a) direct/effective instruction, (b) preservice student teaching, and (c) self
evaluation. Direct instruction is the overarching principle that guides the use of
prompting and other components of effective instruction.

Direct/Explicit Instruction

Since students with disabilities have struggled academically, it's appropriate that
they should be taught with evidence-based teaching practices that can allow them to
succeed in the classroom. Direct instruction, also referred to as explicit instruction, and
has proven to be effective instructional strategy (Brophy & Good, 1986; Carnine, &
Stein, 1990; Ellis & Fouts, 1997; Gersten & Keating, 1989; Hempenstall, 1999; Llyod,
Forness, & Kavale, 1990; Rosenshine, 1986; Rosenshine & Stevens, 1986; Silbert,
Carnine, & Stein, 1990; Simmons, Baker, Fuchs, Fuchs & Zigmond, 1995). Direct
instruction embraces the principles of effective instruction. Rosenshine and Stevens
(1986) found the use of effective instruction practices resulted in higher levels of
achievement for students. They identified six teaching functions of effective instruction:
daily review and checking homework, presentation, guided practice, correctives and
feedback, independent practice, and weekly and monthly review. Students' rate of
academic success was positively correlated to the amount of time they received direct
instruction from the teacher (Ellis & Lenz, 1996).

Rosenshine (1986) described direct instruction as "the performance of students is
monitored, questions are at a low cognitive level, and feedback is immediate and
academically oriented (p.67)." Direct instruction has also been defined as "the systematic teaching of academic strategies to students" (pp. 22, Simmons et al., 1995). Five principles of direct instruction were outlined by Stein, Carnine and Dixon (1998): (a) teach big ideas in content (teach to mastery), (b) teach explicit/generalizable strategies (use a variety of problem types), (c) use scaffolding to assist student in learning new material, (d) integrate skills and concepts within/across discipline, and (e) provide adequate review.

Although there is much evidence to support the use of effective instruction in the classroom, research continues to show this is not occurring (Gersten & Brengelman, 1996; Gersten et al., 1997; Rosenberg, 1996; Simpson, et al., 1993; Wong, 1997). Since students with disabilities are usually struggling academically, an ineffective teacher will only exacerbate the situation. Effective instruction strategies should be used to enhance student achievement.

Gersten and Keating (1989) reviewed the results of Project Follow Through. This longitudinal study by the US Department of Education compared the effectiveness of twelve different instructional programs with over 100,000 at risk children across the United States. The authors concluded that direct instruction was the most effective approach, and that students who received direct instruction made academic gains in reading, language and math. The long term positive results varied according to region, but they included a lower dropout rate, better attendance, fewer grade retentions, and a higher graduation rate.

A meta-analysis of direct instruction by Llyod et al., (1990), and a review of the literature by Ellis and Fouts, (1997) also determined there is a strong empirical base to
support the use of direct instruction. The use of direct instruction with mildly
handicapped learners is supported by many researchers including Christenson, Yssledyke
summarizing effective teaching practices for students with mild handicaps, Christenson,
et al., (1989) classified four categories of “instructional clarity:” (a) a demonstration
prompt/practice, (b) the degree to which instruction is explicit, (c) student understanding
of task demands, and (d) systematic application of learning principles. (p.24).

Prompting. One part of effective instruction that is consistently identified in the
literature is prompting. In an early study, Zeamon and House (1963) proposed that
special education students need more prompting to reach mastery of skills. The
significance of prompting was also noted by Rosenshine (1995). He recommended that
teachers needed to spend more time on this part of direct instruction for students to make
gains. Without prompts, students were unable to complete academic tasks correctly, and
made minimal progress. Prompts should allow the students to practice newly acquired
skills correctly (Englemann, 1980; Kameenui & Simmons, 1990; Deshler & Schumaker,
1998).

In order for prompts to be effective, they must be carefully developed (Deshler &
Schumaker, 1998; Rosenshine, 1997), provide immediate feedback (Englert, 1984;
Swanson, 1999) and be systematically faded (Swanson, 1999). It is the teacher's
responsibility to develop prompts which guide the student from a passive to an active
learner. Prompts and corrective feedback are important, as teachers who use carefully
constructed prompts promote errorless learning (Deshler & Schumaker, 1998;
Englemann, 1980; Kameenui & Simmons, 1990). Errorless learning has been defined as
"an instructional procedure that prompts to evoke only correct responses." (p. 533, Alberto & Troutman, 2003). The use of most to least prompts is recommended to support errorless learning (Alberto & Troutman, 2003; Demchak, 1990). When students are prompted to practice correct responses, they do not practice errors which will have to be unlearned.

Corrective feedback can differ depending upon whether the errors are procedural or factual (Hughes, 1998). Errors also need to be carefully checked for systematic patterns (Deshler & Schumaker, 1998; Kameenui & Simmons, 1990). A study by Rosenshine (1997) found that effective teachers were found to ask specific task related questions and provide feedback, while ineffective teachers were found to ask fewer questions, and provide minimal prompts when correcting errors. Effective teachers also provide feedback that is immediate, non-judgmental, and related to the task (Rosenshine, 1997).

Scaffolding is part of prompting and corrective feedback. It provides "support" for students during initial stages of skill acquisition. It should not be viewed as a permanent fixture; instead, it should be taken away in increments to allow students to become more independent learners (Kameenui & Carnine, 1998), Rosenshine, 1997; Stein, Carnine, and Dixon, 1998) define scaffolding as carefully constructed feedback and materials to assist student in completing work independently. Good scaffolding is dependent upon the teacher's knowledge of the curriculum; the level of scaffolding should be directly related to the student's ability (Pressley, Hogan, Wharton-McDonald, Mistretta, & Ettenberger, 1996). Some examples of scaffolding were identified by Rosenshine (1997) and they are as follows: providing procedural prompts (wh questions),
providing models of appropriate responses, thinking aloud while modeling, anticipating potential problem areas, and controlling difficulty of material. Wharton and Mistretta (1996) caution that scaffolding should not be used in isolation and it should be coupled with other effective teaching strategies. Teachers can control task difficulty through scaffolding (Swanson, 1999), thus decreasing student errors.

Examples/Non-Examples

Another important part of direct instruction is the use of examples and non-examples. Examples should be based on skills that the students have just been taught, while non-examples should provide a review of previously taught skills which serve as discrimination examples (Stein, Kinder, Silbert & Carnine, 2006). A study by Englert (1984) showed effective teachers used more examples, and non-examples. When examining the teaching of fractions to students with learning disabilities, Kelly, Gerstein and Carnine (1990) recommended using a full range of examples, and that similar items should be clustered together. Other researchers suggested that the range of examples and non-examples must be appropriate and varied (Englemann, 1980; Kameenui and Simmons 1990).

The ability of the teacher to be able to recognize or develop good examples and non-examples is underscored by a recent analysis of mathematics textbooks by Jitendra, Griffin, Deatline-Buchman, Dipipi-Hoy, Scesniak, Sokol and Xin (2005). In a review of five 3rd grade textbooks, the authors found that only two contained sufficient examples, while none contained non-examples. In order to ensure students can master skills, teachers will have to provide supplementary materials to the curriculum. If they do not
have adequate preparation in the area of examples and non-examples, their students tend to under generalize or over generalize their responses.

Field Experiences/Student Teaching

Field Experiences are considered to be one of the most important components of teacher education programs by educators and student teachers alike (Sudzina & Knowles, 1993). The skills of the supervisor and cooperating teacher, the teaching placement, and the framework of the undergraduate program have all been identified as factors that can have a positive or negative impact upon the student teacher’s success (Renzaglia, et al., 1997). Although longitudinal research is nearly non-existent, the significance of student teaching continues to be stressed (Maheady & Greenwood, 1997). Despite this, there continues to be a lack of empirical data about the effects of the student teaching experience (Buck, et al., 1992; Maheady & Greenwood, 1997; Ross, Colon, & McCallum, 2005). Maheady and Greenwood (1997) suggested instead of measuring teacher competencies, teachers must be able to demonstrate they know how to teach a specific skill. Ultimately and ideally, student gains should be used to measure the success of teachers (Brownell, Ross, Colon, & McCallum (2005).

The requirements of special education undergraduate student teaching programs also differ. Conderman, Morin, and Stephens (2005) surveyed 61 undergraduate special education programs to examine their grading systems, assignments and supervision. They found that 48% of the student teachers received a letter grade, and that 45% used a satisfactory/unsatisfactory (U or S) rating. The majority of those receiving a letter grade had A’s, while the majority of those receiving a rating were satisfactory. Ninety-seven percent were required to write lesson plans, while only 36% were required to audiotape
or videotape a lesson. Eighty percent were required to reflect upon their experiences. More than half of the student teachers had to write an assessment report, or develop a behavior-change project. Over 98% of supervisors provided feedback either in written or oral form to student teachers.

In a national survey of 115 institutions of higher education, Prater and Sileo (2004) found commonalities in the strengths and weaknesses of the respondents' special education teacher programs. Among the programs' assets were strong university and student teaching practicum site relationships, multiple preservice settings, field experiences that were coordinated with methods courses, opportunities to work with a diverse population, and a solid, conceptual framework. Several of these strengths were also seen as challenges for other teacher education programs. In order to determine the effect of the student teaching experience on students, the authors recommended that more research should focus on the number, length and variety of field experiences, as well as the frequency of supervisory visits. They voiced concern that limitations which were identified in the special education student teaching literature a decade ago (Buck et al., 1992) were still not addressed.

Mastropieri's (1989) was among the first to suggest that special education teacher program general education research based on effective teacher characteristics to determine what constitutes an exemplary. Brownell et al., (2005) expanded upon this, and reviewed the special education preservice teacher research from 1990 to 2003. They concluded that strong supervision was an integral component to the success of preservice programs, and that preservice teaching experiences needed to be carefully developed and monitored. They also contended that student teachers' coursework should reflect
research validated practices, and these practices should be used during their preservice experiences. They advocated increased government and professional organizations to support comparative and longitudinal studies in special education teacher education, as there are still no conclusive studies that support a particular program structure.

In an early look at recent graduates of a special education teaching program, Morsink, Blackhurst and Williams (1979) discussed a follow-up strategy to assist first year teachers. A pilot program was developed using “SOS” audiotapes. When the teachers had a problem, they were asked to record it on “SOS” cassettes and send it back to their supervisor. While there were a small number of subjects, and they participated on a voluntary basis, the authors stated that some changes were made to the teacher preparation program based on the teachers’ responses. The ability of the teachers to reflect upon their concerns was seen as being an important part of this process.

Several studies recommended that student teachers be given an opportunity to be more reflective in their preservice experiences (Dieker & Monda-Amaya, 1997; Goethals & Howard, 2000; Pelletier, 2000). Weiss and Weiss (2001) suggested that an effective framework for good reflective practices should have the student teacher playing an active, rather than passive role in the process. Buck, et al (1992) proposed that preservice teachers should link their field experiences to their undergraduate coursework. By doing this, they would be better able to evaluate and assess their own performance.

Self-Evaluation

Self-evaluation is a part of self-management techniques which includes self-monitoring (documenting if behavior occurred), self-instruction (providing prompts for solving problem) and self-reinforcing (choosing and administering reward). In self-
evaluation a person measures and evaluates his/her own performance according to
previously established criteria (Hughes, Ruhl & Misra, 1989; Kanfer & Gaetan-Buys,
1991). A majority of the special education research on self-management techniques has
focused on students with disabilities. These students typically work on academic skills
and specific behaviors. In a review of nineteen self-management research articles on
students with mental retardation, Hughes, Korinek and Gorman (1991) found there were
generally positive outcomes for students. The majority of studies used self-monitoring
and self-instruction strategies. There were no self-reinforcement studies, while self-
evaluation was only used twice. It was recommended that future research provide
students with the opportunity to show generalization and maintenance of newly acquired
behaviors. While the type of self-management strategy chosen should be dependent upon
the student’s cognitive abilities, another study cautioned against the structure of some
programs. Gross and Brigham (1980) described a study where students who had been
successful using self-evaluation rebelled because of the time involved using them. Thus,
self-evaluation instruments should be developed which are able to be used efficiently and
effectively.

Although most self-management research has focused on students with
disabilities, there is an increasing number of studies on the use of self-management
strategies with special education teachers. An early study by Johnston and Afflerbach
(1983) concluded that self evaluation increased the use of effective teaching practices,
and could result in long-term changes in teacher instruction. Griffin and Kilgore (1998)
investigated the use of self-assessment with special education student teachers. In this
study, Group A was asked to evaluate their lessons and provide a written response using
the following criteria: 1) clarify and define problematic situations of practice, 2) identify
the source of their problems, 3) suggest alternative instructional strategies to address their
problems, and 4) assess the adequacy of their solutions (p. 57). This information was
used by the supervisor to guide the post-conference. Group B received traditional
supervisory feedback; no organized self-assessment system was in place, and the majority
of post-lesson discussion was led by the supervisor. While the results showed there was
no difference between the two groups, and that the structured self-assessment had no
effect on their teaching behaviors, the authors did see a link between the practices of
beginning teachers, and their future teaching behavior. This suggests that preservice
teaching may present the opportunity to affect positive changes in teaching behaviors
with potential implications for their beginning years of teaching.

Allinder, Bolling, Oats and Gagnon (2000) looked at the impact of self-
monitoring for teachers of students with disabilities, and its effect on these students’
mathematics achievement. Thirty-one teachers were divided into three groups. Two
treatment groups received instruction in curriculum based measurement (CBM), while
the control group received no training. The treatment groups were then split, with one
half receiving training in self-monitoring (CBM/SM). The CBM/SM group also had to
answer a series of questions which included how the student had improved, and what new
target skills could be developed. A formal plan was then developed for 2-3 weeks, and
changed as necessary throughout an entire school year. The results showed the students
of those teachers who had both CBM and self-monitoring training made the greatest
gains. It was suggested that when provided with the framework of the self-monitoring
questions, the CBM/SM teachers were better able to adjust the instruction to fit their
students’ needs. The authors also stated that self-monitoring also had implications for use with praise, questioning techniques and delivery of instruction.

A study by Sutherland and Wehby (2001) focused on the effects of self-evaluation on special education teachers who taught students with emotional disturbances. They looked at their rate of praise and the frequency of correct academic responses. The experimental group was instructed in the use of positive praise. These teachers were then asked to practice the praise strategies, and listen to five minutes of their audio taped instruction each day. They predicted a goal for praise statements over a fifteen minute period, and then charted their actual results on a daily basis. The experimental group made significant gains over the control group during the intervention phase in increasing the frequency of praise statements and correct responses. However, this did not continue during the maintenance phase where the experimental group’s behavior reverted to levels displayed during the baseline phase. The authors contended that the limited number of probes during the maintenance phase could have had a negative impact on the results.

Even though effective instruction techniques have been empirically validated, it appears teachers are not using these practices in the classroom (Deshler & Shiller, 1997; Gersten & Brengelman, 1996; Gersten, Vaughn, Deshler & Schiller, 1997; Rosenberg, 1996; Simpson, Whelan & Zabel, 1993; Wong, 1997). Student teachers should have ample opportunities to practice effective teaching strategies before they enter the teaching profession. However, there is little research on student teachers’ use of effective instruction when developing lesson plans. General guidelines to promote use of effective instruction strategies by preservice teachers were developed by Mastropieri (1989). She noted the importance of scripted lesson plans to prevent student teachers from deviating
from lesson objectives. Although there was no research to substantiate the use of scripts, it was recommended preservice teachers script their plans to enable their students to reach the intended objectives. Presently, there are no data to support the use of scripted prompt lesson plans. Since prompting was seen as being an integral part of effective teaching, and self-evaluation has proven to be a helpful self-management technique, this study attempts to address this void by having the subjects complete a Self-Evaluation Prompt Checklist. Student teachers have many demands placed on them, so the completion of the checklist should add minimal time to their student teaching requirements. The purpose of this study was to examine the effect of the use of this checklist with pre-service teachers scripted lesson plans.
Chapter 3

METHODOLOGY

Participants and Setting

The initial pool of participants was comprised of fifteen special education student teachers from a large state university, who were placed in the same urban-suburban school district for their practicum. All had taken undergraduate coursework which focused on instructional and curriculum design, and effective instructional procedures. Each student teacher completed the same assignments, and fulfilled the same responsibilities in the classroom to meet the requirements of the student teaching practicum. A pre-assessment was conducted to select the participants for the study from this initial pool. To collect pre-assessment data, each student teacher submitted their lesson plans for one week. To insure anonymity, every student teacher randomly chose a number from 1 to 15; each lesson plan was subsequently identified by that number for the remainder of the study. Those student teachers who exhibited the greatest difficulty writing the scripted prompt step, as shown by the lowest average scores, were chosen to be part of the study.

Mark was a 21 year old male assigned to an elementary Resource Room Learning Support Classroom; his area of instruction was fourth grade math. The number of students in his math class ranged from 10 to 15. The students in this classroom were classified as learning disabled, mildly mentally retarded, or emotionally disturbed. Dana was a 21 year old female assigned to an elementary Resource Room Learning Support Classroom; her area of instruction was third grade math. All of her students were diagnosed with learning disabilities. The number of students in her class ranged from 8
to 10. John was a 22 year old male assigned to a Full-time Emotional Support Classroom in a high school; his area of instruction was communications. The number of students in his classroom ranged from 10 to 13. All students in the Emotional Support classroom were classified as emotionally disturbed; four also had learning disabilities, while one who was also mildly mentally retarded.

Approximately 6,500 students were enrolled in the school district. The demographics were as follows: 44% Caucasian, 46% African American, 2% Asian, and 3% Hispanic. Special education services were provided for 16% of the school population.

Dependent Variable

Scores from the Prompt Self-Evaluation Checklist served as the dependent measure for this study. The researcher used the checklist (see Appendix A) to evaluate each participant's plan after it was developed, and before it was implemented in the classroom. The checklist contained a rubric comprised of nine areas which were summarized from the effective teaching research on guided practice/prompting. The nine areas were as follows: (a) task analysis (Rosenshine, 1995); (b) prompt step replicates model (Deshler & Schumaker, 1998; Ellis & Lenz, 1998; Hughes, 1998); (c) clarity of question or direction (Rosenshine 1995; Rosenshine and Stevens, 1986; Rosenshine, 1986; Stallings, Cory, Fairweather and Needels; Swanson, 1999), (d) students asked to perform skill (Gersten, 1998; Rosenshine, 1986; Rosenshine & Stevens, 1986, Rosenshine, 1995), (e) students asked to explain answers, (Gersten, 1998; Rosenshine 1995; Rosenshine & Stevens, 1986; Rosenshine, 1986; Swanson, 1999), (f) fading of prompts (Demchak, 1989; Rosenshine, 1995; Swanson, 1999), (g) examples, (Rosenshine and Stevens, 1986); (h) non-examples (Hughes, 1998; Kaneenui &
Simmons, 1990), and (i) minimal pairs (Kaneenui & Simmons, 1990). A scale of 1-4 was used to rate each part of the scripted prompt step.

Procedures

Baseline. During the baseline condition, all student teachers designed and taught a lesson to their respective students each day. As with all lesson plans the student teachers taught throughout the semester, they were also required to document whether the students met the lesson objective, and provide a short narrative to describe the strengths and weaknesses of every lesson. A copy of the lesson plan and an evaluation of student and teacher performance were made by the participant, and collected by the researcher. The scripted prompt section of the lesson plan was then evaluated by the researcher according to the rubric of the Prompt Self-Evaluation Checklist.

A traditional supervisory method was used during baseline. The supervisor observed the entire lesson (the average lesson time ranging from 40 to 60 minutes), and wrote a narrative summary of the lesson, including event recording of specific teacher or student behavior as needed. When the lesson was finished, the supervisor held a post-conference to discuss the lesson’s outcome, and recommendations for implementing and delivery future instruction would be discussed. These post-conferences were usually held immediately after the lesson, however some were held later in the day due to schedule conflicts. The supervisor observed each student teacher ten to eleven times during the semester.

All student teachers were required to write daily lesson plans for each lesson they taught. These lesson plans followed the model previously introduced in their
undergraduate direct instruction classes. A typical lesson plan included the following: lesson objectives, opening (with attention, review, goal and relevance of lesson), body (model, prompt and check steps), and closing (review, preview, and independent work). The student teachers also summarized the instructional activities for each step of the lesson, and there was no scripting required for any portion of the plan. However, for this study, in addition to lesson plans that followed the same direct instruction format, every student teacher was also required to include a fully scripted prompt section. This lesson was then taught by the student teacher to one class on a daily basis. The researcher then independently rated the lesson plans of each student using the same checklist. Feedback was provided by the researcher to the participants within three days of receiving and reviewing the lesson plan. The researcher met with each participant, and specific areas of concern were addressed on an individual basis.

Intervention. The independent variable was the completion of the Prompt Self-Evaluation Checklist (see Appendix A). Just prior to intervention, the researcher provided instruction in the use of the Prompt Self-Evaluation Checklist using three of a given participant's baseline lesson plans. A modified model-prompt-check format was followed to teach this checklist. First, each statement on the checklist was reviewed, and an explanation of the rubric was provided. The researcher modeled the use of the Prompt Self-Evaluation Checklist. The prompt section of the participant's first lesson plan was rated by the researcher according to the checklist, and an explanation of each score was provided. Then, the researcher and Mark used the Prompt Self-Evaluation Checklist together to rate the prompt section of the second lesson plan. Each section was discussed, and if there were any discrepancies in the scoring, that specific section was
reviewed. Finally, the participant and researcher completed the Prompt Self-Evaluation checklist for the third lesson plan independently. Mark’s checklist scores were compared with the researcher’s checklist scores. If there were significant differences in any section, that section was reviewed. When the researcher and participant’s scores were similar, the student teacher was required to complete the checklist independently after writing each lesson plan. A supplementary sheet was provided which reviewed the components of each section of the checklist (see Appendix B). In addition, the student teachers were required to record their scores for each section of the checklist on a summary sheet (see Appendix C). If there were ratings of 1 or 2 for any section (which indicated poor performance), the participant was asked to make corrections on the lesson plan. A copy of every lesson plan and the completed Prompt Self-Evaluation Checklist was collected on a weekly basis by the researcher. The lesson plan was then reviewed, and evaluated by the researcher using the Prompt Self-Evaluation Checklist criteria. Each participant’s daily average scores on each item, as well as a composite score, were plotted on individual graphs by the researcher.

Experimental Design

A single-subject multiple baseline design was used to evaluate the effects of self-evaluation (independent variable) on the quality of student teachers’ lesson plans (dependent variable). A multiple-baseline across subjects design was used in this study (Tawney & Gast, 1984). This design documented each participant’s performance (on writing the prompt step in lesson plans). This study included two phases: baseline and intervention (see Figure 2). Data were collected for every lesson delivered for three student teachers during the baseline and intervention phase.
A multiple-baseline across subjects design has also been referred to as a "time-lagged control" design (Gottman, 1973). This design is ideal when an intervention cannot be withdrawn (e.g., teaching a skill) or when it is unethical to reverse or withdraw an intervention (Baer, et al., 1968; Kazdin, 1982; Richards, Taylor, Ramasamy, & Richards, 1999; Tawney & Gast, 1984). A minimum of three to four participants is recommended to determine the effectiveness of the intervention (Kazdin, 1982; Hersen & Barlow, 1983; Richards, et al, 1999; Tawney & Gast, 1984). When using this design, the participants should be similar, and exposed to the same conditions, settings or context (Barlow & Hersen, 1984; Richards, et al., 1999).

In the multiple-baseline across subjects design, data were collected for each subject during baseline. In an effort to achieve a stable baseline and allow the participants to acclimate to their new teaching environment, an extended baseline of 7 points was used. Once seven lesson plans were completed, baseline stability was evaluated using the method suggested by Alberto and Troutman (2003). In this method, baseline data are considered stable if no point varies more that 50% from the mean of baseline. All data points on the primary measure in this study fell within 50% of the average baseline mean. This procedure continued for the two remaining subjects. However, because of district and state testing, Participant Three was unable to plan lessons for a period of one week. As a result, he taught two lessons a day the following week, submitted nine lessons the following week, and entered the intervention phase with fifteen data points.

Interobserver Agreement

A second student teaching supervisor, naïve to the purpose of the study, served as
an independent observer for agreement purposes. The independent observer had similar training and educational background as the researcher. Training on the checklist provided to the independent observer followed the same format provided to the participants of the study. First, each item on the checklist was reviewed. Second, the researcher modeled the use of the checklist on a sample lesson. Next, the researcher and independent observer worked together to evaluate a lesson using the checklist. Finally, the independent observer scored a lesson independently.

Twenty-four percent of lesson plans, across phases, were evaluated by the second observer (26% for Mark, 23% for Dana, and 23% for John). Agreement was calculated for each item on the checklist. After the researcher and independent observer scored a given lesson, the researcher compared scores for each item on the checklist and noted if the scores were the same (i.e., agreed) or were different (i.e., disagreed). The following formula was used to assess agreement for each item [(agreements / agreements + disagreements) x 100] (see Kazdin, 1982). Please see Table 1 for mean agreement for each item across participants.

Treatment Integrity

As a measure of treatment integrity student completed prompt checklists were compared with researcher-completed checklists for each lesson. The purpose of this comparison was twofold. First, a completed checklist provided some evidence that the participant did indeed receive the independent variable (i.e., 100%). Second, a measure of agreement between student teacher and researcher completed checklists provided an index of how close the student evaluations were to a standard (i.e., were the students accurate evaluators of their own performance?).
To ensure treatment integrity the researcher first documented the percentage of lessons turned in with an accompanying checklist. All lessons turned in did have a checklist, indicating a high level of treatment integrity. Second, a procedure similar to interobserver agreement of the dependent variable was used to gauge the level of agreement between researcher and student teacher completed lessons. The researcher compared student teacher and researcher scores for each item on the checklist and noted if the scores were the same (i.e., agreed) or were different (i.e., disagreed). The following formula was used to assess agreement for each item [(agreements / agreements + disagreements) x 100] (see Kazdin, 1982). Please see Table 2 for mean agreement for each item across participants.

Every lesson plan for each student teacher was evaluated to determine response-by- response agreement for each section of the checklist during the intervention phase. Student teacher/agreement data for Mark ranged from .44 to .94, for an average of 73.1. Student teacher/agreement data for Dana ranged from .1 to .3, for an average of .22. Student teacher/agreement for John ranged from .5 to 1.0, for an average of 67.3 (See Table 2).
Table 1: Mean Percentage of Response-by-Response Agreement-Researcher/Outside Observer

<table>
<thead>
<tr>
<th></th>
<th>Mark</th>
<th>Dana</th>
<th>John</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Analysis</td>
<td>83</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>Prompt Replicates Model</td>
<td>100</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Clarity of Questions/Directions</td>
<td>83</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Students Perform Skill</td>
<td>83</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Students Explain Skill</td>
<td>83</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Fading of Prompts</td>
<td>83</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Examples</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Non-Examples</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Minimal Pairs</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>90.5</td>
<td>88.9</td>
<td>88.9</td>
</tr>
</tbody>
</table>
Table 2: Mean Percentage of Response-by-Response Agreement—Researcher/Student Teacher

<table>
<thead>
<tr>
<th></th>
<th>Mark</th>
<th>Dana</th>
<th>John</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Analysis</td>
<td>69</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>Prompt Replicates Model</td>
<td>63</td>
<td>30</td>
<td>83</td>
</tr>
<tr>
<td>Clarity of Questions/Directions</td>
<td>94</td>
<td>10</td>
<td>67</td>
</tr>
<tr>
<td>Students Perform Skill</td>
<td>94</td>
<td>10</td>
<td>83</td>
</tr>
<tr>
<td>Students Explain Skill</td>
<td>63</td>
<td>20</td>
<td>83</td>
</tr>
<tr>
<td>Fading of Prompts</td>
<td>81</td>
<td>10</td>
<td>67</td>
</tr>
<tr>
<td>Examples</td>
<td>81</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Non-Examples</td>
<td>69</td>
<td>20</td>
<td>67</td>
</tr>
<tr>
<td>Minimal Pairs</td>
<td>44</td>
<td>20</td>
<td>67</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>71.4</td>
<td>20</td>
<td>74.1</td>
</tr>
</tbody>
</table>
Chapter 4

RESULTS

The results for each of the participants’ checklist scores are shown in Table 3. All three participants showed gains in overall mean scores from baseline to intervention. Mark’s score increased by 45% from baseline ($M=2.1$) to intervention ($M=3.0$). Dana’s score increased by 23% from baseline ($M=2.2$) to intervention ($M=2.7$). John’s score increased by 53% from baseline ($M=1.9$) to intervention ($M=2.9$).

Figure 1 represents the rating for each participant’s overall scores on the checklist. Mark was the first to reach a stable baseline (completed at least seven lessons and had no data point varying more than 50% from the mean). Dana was the next to exhibit a stable baseline. John was introduced to the intervention four sessions after Dana. Each participant showed gains in every category on the checklist. Specific data on each category are presented in Figures 2-10 and analyzed in the following sections.

Task Analysis

The first category focused on the task analysis of the prompt steps. For this step, the participants were expected to arrange the plan in a logical order which followed a correct scope and sequence. Mark’s score increased by 15% from baseline ($M=2.6$) to intervention ($M=3.0$). Dana’s score increased by 15% from baseline to intervention ($2.6-3.0$). John’s score increased by 30% from baseline ($M=2.3$) to intervention ($M=3.0$) (Table 3). Figure 2 represents the rating for each participant’s task analysis scores on the prompt self evaluation checklist. Mark had a four rating for the first seven data points.
<table>
<thead>
<tr>
<th>Table 3: Summary of Participants’ Prompt Checklist Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Overall Score</td>
</tr>
<tr>
<td>Mark</td>
</tr>
<tr>
<td>Dana</td>
</tr>
<tr>
<td>John</td>
</tr>
<tr>
<td>Task Analysis</td>
</tr>
<tr>
<td>Mark</td>
</tr>
<tr>
<td>Dana</td>
</tr>
<tr>
<td>John</td>
</tr>
<tr>
<td>Replicates Model</td>
</tr>
<tr>
<td>Mark</td>
</tr>
<tr>
<td>Dana</td>
</tr>
<tr>
<td>John</td>
</tr>
<tr>
<td>Clarity</td>
</tr>
<tr>
<td>Mark</td>
</tr>
<tr>
<td>Dana</td>
</tr>
<tr>
<td>John</td>
</tr>
<tr>
<td>Students Perform Skill</td>
</tr>
<tr>
<td>Mark</td>
</tr>
<tr>
<td>Dana</td>
</tr>
<tr>
<td>John</td>
</tr>
<tr>
<td>Students Explain Answers</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Mark</td>
</tr>
<tr>
<td>Dana</td>
</tr>
<tr>
<td>John</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fading of Prompts</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>2.0</td>
<td>2.0-2.0</td>
<td>3.3</td>
<td>2.0-3.0</td>
<td>65</td>
</tr>
<tr>
<td>Dana</td>
<td>1.9</td>
<td>1.0-3.0</td>
<td>2.8</td>
<td>2.0-4.0</td>
<td>47</td>
</tr>
<tr>
<td>John</td>
<td>1.9</td>
<td>1.0-2.0</td>
<td>2.8</td>
<td>2.0-3.0</td>
<td>47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>2.3</td>
<td>2.0-3.0</td>
<td>2.9</td>
<td>2.0-3.0</td>
<td>26</td>
</tr>
<tr>
<td>Dana</td>
<td>2.1</td>
<td>1.0-3.0</td>
<td>3.0</td>
<td>3.0-3.0</td>
<td>43</td>
</tr>
<tr>
<td>John</td>
<td>2.0</td>
<td>1.0-3.0</td>
<td>2.3</td>
<td>2.0-3.0</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Examples</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>1.1</td>
<td>1.0-2.0</td>
<td>3.0</td>
<td>3.0-3.0</td>
<td>173</td>
</tr>
<tr>
<td>Dana</td>
<td>1.4</td>
<td>1.0-3.0</td>
<td>2.2</td>
<td>1.0-4.0</td>
<td>57</td>
</tr>
<tr>
<td>John</td>
<td>1.6</td>
<td>1.0-3.0</td>
<td>2.7</td>
<td>2.0-3.0</td>
<td>69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimal Pairs</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>1.0</td>
<td>1.0-1.0</td>
<td>2.0</td>
<td>1.0-3.0</td>
<td>100</td>
</tr>
<tr>
<td>Dana</td>
<td>1.0</td>
<td>1.0-1.0</td>
<td>1.7</td>
<td>1.0-3.0</td>
<td>70</td>
</tr>
<tr>
<td>John</td>
<td>1.4</td>
<td>1.0-3.0</td>
<td>2.8</td>
<td>2.0-3.0</td>
<td>100</td>
</tr>
</tbody>
</table>
Figure 1. Overall Scores of Participants on Prompt Self-Evaluation Checklist
Figure 2. Task Analysis Scores of Participants on Prompt Self-Evaluation Checklist
during the intervention, but reverted back to the stable levels displayed during the baseline phase. Dana showed high levels of variability during the baseline, but showed an overall increase in level and stability during the intervention. John made the most gains in this area. His baseline ratings were highly variable, but intervention resulted in more stable responding.

Replication of Model Step

The second category centered on the replication of the model step. Participants developed a prompt step which was similar to the format used for the model step. For example, if a student teacher was teaching multi-digit multiplication, the same procedures and types of examples used to teach this process during the model step were followed for the prompt step. Mark's score increased by 10% from baseline ($M=3.0$) to intervention ($M=3.3$). Dana's score increased by 10% from baseline ($M=2.9$) to intervention ($M=3.2$). John's score increased by 30% from baseline ($M=2.3$) to intervention ($M=3.0$) (Table 3).

Figure 3 represents the rating for each participant's prompt replicates model scores on the checklist. Mark had a four rating for the first four data points during the intervention, but eventually reverted back to the same levels he displayed during the baseline phase. Dana's ratings were fairly stable during the baseline, with the exception of two data points (one high and one low). There were only two high data points during the intervention, while the other data was similar to the baseline. John made the most gains in this area. His baseline ratings were highly variable, but they increased in level, and were stable during the intervention.

Clarity of Questions and Directions

The third category placed an emphasis on the clarity of questions/directions
Figure 3. Prompt Replicates Model Scores of Participants on Prompt Self-Evaluation Checklist
provided for students (i.e., questions/directions are related to skill being taught). Mark’s score increased by 10% from baseline ($M=3$) to intervention ($M=3.3$). Dana’s score increased by 26% from baseline ($M=2.3$) to intervention ($M=2.9$). John’s score increased by 58% from baseline ($M=1.9$) to intervention ($M=3.0$).

Figure 4 represents the rating for each participant’s clarity of questions/directions scores on the checklist. Mark’s baseline ratings were stable, and while he showed an initial increase in level and stability in the intervention phase, he eventually reverted back to baseline levels. Dana showed levels of variability during the baseline, but demonstrated stability during the intervention. John made the most gains in this area. His baseline ratings were variable, with fourteen of fifteen ratings of two or lower. His data increased in level, and were stable during the intervention.

Student Opportunities to Perform Skill

The fourth category referred to adequate opportunities for student to practice the skill. Mark’s score increased by 55% from baseline ($M=2.0$) to intervention ($M=3.1$). Dana’s score increased by 11% from baseline ($M=2.8$) to intervention ($M=3.1$). John’s score increased by 58% from baseline ($M=1.9$) to intervention ($M=3.0$).

Figure 5 represents the rating for each participant’s performs skills scores on the checklist. Mark had a stable baseline, but showed an increased level during the intervention. Dana showed levels of variability during the baseline, but demonstrated an overall increase in level and stability during the intervention. John continued to make the most gains in this area. His baseline ratings were low and somewhat variable, but these increased in level, and were stable during the intervention.
Figure 4. Clarity of Questions Scores of Participants on Prompt Self-Evaluation Checklist
Figure 5. Students Perform Skills Scores of Participants on Prompt Self-Evaluation Checklist
Students Asked to Explain Answers

The fifth category focused on providing students with an adequate number of opportunities to explain answers. Mark’s score increased by 63% from baseline ($M=1.6$) to intervention ($M=2.6$). Dana’s score increased by 35% from baseline ($M=2.0$) to intervention ($M=2.7$). John’s score increased by 100% from baseline ($M=1.5$) to intervention ($M=3.0$).

Figure 6 represents the rating for each participant’s students explain answers scores on the checklist. Mark’s baseline scores were two or lower, and while he did show improvement, he returned to initial baseline levels. Dana showed levels of variability and a downward trend during the baseline, but with the exception of two data points, she demonstrated an overall increase in level and stability during the intervention. John continued to make the most gains in this area. While his baseline ratings were low, and displayed a downward trend, his levels of data increased and showed stability.

Fading of Prompts

The sixth category centered on fading of prompts from a high level to a low level. Mark’s score increased by 65% from baseline ($M=2.0$) to intervention ($M=3.3$). Dana’s score increased by 47% from baseline ($M=1.9$) to intervention ($M=2.8$). John’s score increased by 47% from baseline ($M=2.3$) to intervention ($M=3.0$).

Figure 7 represents the rating for each participant’s prompts faded scores on the checklist. Mark’s baseline scores were low, and while he did initially show some variability, he demonstrated an increase in level. Dana showed variability and a downward trend during the baseline, and although she did show some variability during the intervention, she never returned to the lowest scores she displayed during the baseline.
Figure 6. Students Explain Answers Scores of Participants on Prompt Self-Evaluation Checklist
Figure 7. Fading of Prompts' Scores of Participants on Prompt Self-Evaluation Checklist
phase. John made the most gains in this area. While his baseline ratings were low and his overall levels of data increased and showed stability during the intervention phase.

Type and Number of Examples

The seventh category placed an emphasis on providing the appropriate type and number of examples for the task. Mark's score increased by 26% from baseline ($M=2.3$) to intervention ($M=2.9$). Dana's score increased by 43% from baseline ($M=2.1$) to intervention ($M=3.0$). John's score increased by 15% from baseline ($M=2.0$) to intervention ($M=2.3$).

Figure 8 represents the rating for each participant's examples' scores on the checklist. Mark's baseline scores displayed a downward trend, and although he did have one low data point, his level increased and remained stable. Dana showed levels of variability and a downward trend during the baseline; she demonstrated an increase in level and stability during the intervention. John's levels were variable in this area. While his baseline ratings were low, and displayed a downward trend, the level increased and showed stability in the intervention phase.

Type and Number of Non-Examples

The eighth category focused on providing the appropriate type and number of non-examples for concept and rule lessons. Mark's score nearly tripled from baseline ($M=1.1$) to intervention ($M=3.0$). Dana's score increased by 57% from baseline ($M=1.4$) to intervention ($M=2.2$). John's score increased by 69% from baseline ($M=1.6$) to intervention ($M=2.7$).

Figure 9 represents the rating for each participant's non-examples scores on the checklist. Mark's baseline scores had a downward trend, but he showed a change in level
Figure 8. Examples Scores of Participants on Prompt Self-Evaluation Checklist
Figure 9. Non-Examples Scores of Participants on Prompt Self-Evaluation Checklist
and stability during the intervention phase. Dana showed levels of variability and a downward trend during the baseline, and while she did initially show an upward trend, she reverted back to baseline level during the intervention. However, she did finish this phase with an upward trend. John’s levels were highly variable in this area. During the intervention phase he did show a change in level, with less variability.

Type and Number of Minimal Pairs

The ninth category centered on providing the appropriate type and number of minimal pairs in concept and rule lessons. Mark’s score increased by 100% from baseline ($M=1.0$) to intervention ($M=2.0$). Dana’s score increased by 70% from baseline ($M=1.0$) to intervention ($M=1.7$). John’s score increased by 100% from baseline ($M=1.4$) to intervention ($M=2.8$).

Figure 10 represents the rating for each participant’s minimal pair scores on the checklist. Mark’s baseline was at a low level, and while he maintained this for the first four data points in the intervention, he was able to finish with an upward trend. Dana demonstrated a low level during the baseline, and while she did show some improvement, the majority of her data points reverted to baseline level during the intervention. She also finished this phase on a downward trend. During baseline, John’s levels were low for twelve of fifteen data points. In addition, he showed high variability towards the end of the baseline phase. During intervention, he demonstrated a positive change in level and stability, although the last data point was on a downward trend.
Figure 10. Minimal Pairs Scores of Participants on Prompt Self-Evaluation Checklist
Chapter 5

DISCUSSION

The purpose of this study was to examine the effects of a Prompt Self-Evaluation Checklist on the scripted lesson plans of student teachers. These instructional plans were based on direct instruction, which has been shown to be an effective teaching strategy (Carnine, & Stein, 1990; Ellis & Fouts, 1997; Gersten & Keating, 1989; Hempenstall, 1999; Llyod, Forness, & Kavale, 1990; Rosenshine, 1986; Rosenshine & Stevens, 1986; Silbert et al., 1990; Simmons et al., 1995). While there has been some research to support the use of self-management strategies with teachers and preservice teachers (Allinder, et al. 2000; Griffin & Kilgore1998; Sutherland and Webby 2001), few self-evaluation studies have been completed with this group. Although (Mastropieri (1989) recommended the use of scripted lesson plans with preservice teachers, there are currently no studies to support this practice.

Findings of this study are consistent with the positive outcomes of other self-management research (Hughes, Korinek and Gorman, 1991; Hughes, Ruhl & Misra, 1989; Kanfer &Gaelick-Buys, 1991). All student teachers improved in their ability to write scripted prompt lesson plans when using the self-evaluation checklist. However, the size of those gains was dependent upon the individual student teacher, and the skill area being evaluated.

Mark showed initial gains in task analysis, prompt replicates model, clarity of questions, and students explain answers, but eventually reverted back to baseline levels. He was able to sustain improvement in the areas of students perform skill, prompts faded, examples, non-examples and minimal pairs. Overall, his lesson plans were well written,
and contained adequate detail. All of his math lessons followed a procedural or rule format, and were from a math series that used an explicit instruction approach. After the intervention was introduced, he was able to use the same layout for many of his lessons, and include the necessary components for the prompt step.

Dana was more consistent with task analysis, but she never surpassed the scores she received during baseline. She was also stable with prompt replicates model and students perform skill. She was able to sustain improvement in the areas of clarity of questions, students explain answers, prompts faded and examples. Dana had the greatest challenge of the three participants, as her math curriculum followed a constructivist approach. In this program, as many as six facts, rules or concepts could be introduced in one lesson, and few were taught to mastery. Because of this, she had to focus on one or two areas of instruction which were a reflection of students' IEP goals and objectives. All of her math lessons had to be modified to fit a direct instruction format. She continued to struggle with the development of non-examples and minimal pairs primarily because she misidentified rule lessons as fact lessons, and did not provide the appropriate number or type of non-examples and minimal pairs.

Of all participants, John made the greatest gains in the majority of areas. He showed considerable improvement in the areas of task analysis, prompt replicates model, clarity of questions, students perform skill, students explain answers, fading of prompts, non-examples and minimal pairs. At first he showed a modest gain in the area of examples, but was unable to sustain this, and provided a minimal number and range of examples. John instructed students in written language skills, and all of his lessons followed a rule or concept format. Some of his initial difficulty stemmed from his
inability to identify the correct type of lesson; however the majority of his problems
centered on his inability to develop an adequate number and range of non-examples and
minimal pairs. Even though he received specific supervisory feedback on observed
lessons in these areas, he did not show an improvement until he received the intervention.

Implications

This study was viewed as a way to link the conceptual framework of the students’
undergraduate program to their student teaching field experiences. Since all student
teachers in this study had the same training in direct instruction, this was another way for
them to practice their effective teaching skills.

Generally, the largest gains were made in the areas of (1) students explain
answers, (2) fading of prompts, (3) non-examples (4) minimal pairs, (5) students perform
skill and (6) clarity of questions. These gains were a direct refection of how low the
scores were during baseline. Since these were identified as weak areas, perhaps a
solution to this could be found in the teacher preparation courses which focus on these
areas of instruction and field experiences. Undergraduate students may need to have
multiple opportunities to practice these skills in pre-service experiences prior to entering
student teaching. Once they enter student teaching, the supervisor can also play an
important role in this process. Since implementation of these instructional skills have
been proven to be part of effective teaching (Demchak, 1995; Gersten, 1998; Hughes,
1998; Kaneenui & Simmons, 1990; Rosenshine 1995; Rosenshine & Stevens, 1986;
Rosenshine, 1986; Swanson, 1999), these areas could be reviewed at each seminar during
the first weeks of the field experiences. Scripted lesson plans, coupled with self-
evaluation checklists, could also be used during the first month of the practicum when
there are fewer demands placed on student teachers. The scripted plans could then be withdrawn during the second month of student teaching. A self-evaluation checklist which contains all required components of an effective lesson could be developed for the student teachers to evaluate lessons after they have been implemented. This would eliminate the need for lengthy scripted lesson plans, while still allowing student teachers to focus on key components of their lessons. The supervisor could also use this checklist to assess the student teacher’s performance during observed lessons. Any additional areas of concern would also continue to be addressed in classroom observations through written and oral feedback by the supervisor.

Overall, modest gains were made in the areas of (1) examples, (2) task analysis of skills, and (3) prompt replicates model. In the area of examples, Mark and Dana made solid gains to improve to an average score of 3, while John started with an average of 2, and he only improved by .3. In task analysis of skills and prompt replicates model, Mark and Dana started with higher scores, and still made gains. John’s gains were greater, and his final mean score was similar to the other participants. One assumption could be that student teachers who originally scored lower in these areas required more training and practice. Those who started with higher scores, there was probably a ceiling effect as they were already familiar with these skills, so there was less opportunity for growth.

The participants’ average overall scores ranged from 1.0 to 3.4 during the baseline and intervention phases. Since the top score they could receive was a 4, this means there were still deficits in some areas of the scripted prompt step, and additional instruction or practice was needed in these areas.
Writing a good lesson plan may not ensure that it will be implemented effectively in the classroom. While it does provide a guideline for student teachers to keep them from deviating from the lesson’s objectives (Mastropieri, 1989), ultimately the delivery of instruction and documentation of student gains are essential to determine teacher effectiveness (Brophy & Good 1986; Rosenshine, 1986; Rosenshine, 1995; Rosenshine & Stevens, 1986). For future studies which focus on student teachers’ use of scripted lessons plans and/or self-evaluation of lesson plans, samples of students’ independent work could be collected to determine teacher effectiveness for specific lessons.

The Self-Evaluation Checklist was developed to enable participants to measure their performance according to previously established criteria (Hughes, Ruhl & Misra, 1989; Kanfer &Gaelick-Buys, 1991). When a response-by-response agreement data was calculated for the researcher and participants, there were some interesting findings. While a .80 is considered acceptable for agreement, Kazdin (1982) also noted “lower levels of agreement may be quite useful and acceptable if the conditions under which they were obtained minimize sources of bias and artifact (pp.73).” No student teacher was able to attain a .80 for every item on the checklist. Mark’s student teacher/researcher agreement data ranged from .44 to .94, for an average of 73.1 (See Table 2). Only four items had agreement data of .80 or above. He tended to underrate his scores, although he never had a rating difference greater than one. Dana’s student teacher/researcher agreement data ranged from .10 to .30, and no items met the .80 criteria. She overrated herself on all items on the checklist. John’s student teacher/researcher agreement data ranged from .50 to .10, for an average of 67.3. Like Mark, he had only four items which had agreement data of .80 or above. He also underrated his scores by one point. Overall,
the student teacher/researcher agreement data was poor, as none of the participants had a .80 or above for all items on the checklist. Despite these differences, it did not affect their ability to make gains in each of those items after using the Self-Evaluation Checklist.

Limitations

This study had several limitations. The first was the length of the practicum, which was fifteen weeks. Since student teachers did not begin to write lesson plans until the second week, and it took two weeks before seven sample scripted plans could be collected, it was over a month before the first participant (Mark) was able to receive the intervention. Although Gross and Brigham (1980) cautioned that self-evaluation could be time consuming, this was not a problem with the completion of the Prompt Self-Evaluation Checklist as student teachers said it took less than five minutes to complete. However, they did struggle with the amount of time it took to write the scripted prompt step. It is unrealistic to expect student teachers or teachers to write such extensive lesson plans on a daily basis. Also, student teachers took over full teaching responsibility during the last four weeks of the practicum, and had several major projects due towards the end of the semester. The scripted lesson plans were discontinued at this time. This also prevented the implementation of maintenance or generalization probes. Because of these time restrictions, only three student teachers were able to participate in this study.

Second, due to scheduling conflicts in school, some participants were only able to teach the scripted plan three times a week, which resulted in less data being collected. Some lessons also took two or three days to complete. Third, student teachers did volunteer to be part of this study. Although all student teachers had to follow the same requirements
for their field experience, and all did willingly consent to participate in this project, some may have participated solely because the researcher was their student teaching supervisor. Fourth, while the prompt step was viewed as the most important part of the direct instruction lesson, this was the only part of the lesson plan the student teachers self-evaluated. Effective lesson plans also include an introduction, model step, check step and closing. The greatest limitation of this study was that data were collected on the student teachers, while none were collected on student achievement. However, the student teachers were trained in direct instructional techniques that have been shown to increase student achievement (Brophy & Good 1986; Rosenshine, 1986; Rosenshine, 1995; Rosenshine & Stevens, 1986).

Summary

This study showed that student teachers did improve in their ability to write scripted prompt lesson plans which followed a direct instruction format after being instructed in the use of a self-evaluation checklist. Since there is a long history of empirical research which has validated the principles of effective teaching (Brophy & Good 1986; Rosenshine, 1986; Rosenshine, 1995; Rosenshine & Stevens, 1986), student teachers should be given the opportunity to practice these skills. Although some researchers have suggested that teacher self-evaluation can result in sustained and improved instructional practices (Johnston and Afflerbach, 1983), work in the area of self-evaluation of effective instruction should be conducted to look at generalization and maintenance of these skills, and its application to delivery of instruction. Finally, student achievement should always be the best indicator of successful teaching. A strong conceptual framework in undergraduate special education programs should be coupled
with superior field experiences where student teachers have the opportunity to learn and use effective teaching practices on a daily basis.
REFERENCES

Gersten, R., & Brengelman, S U. (1996). The quest to translate research into classroom

Appendix A

PROMPT SELF-EVALUATION CHECKLIST
PROMPT SELF-EVALUATION CHECKLIST

<table>
<thead>
<tr>
<th>1. Task Analysis of Skill</th>
<th>Skills to be taught missing many steps; Not in correct sequence</th>
<th>Skills to be taught missing one step, or one step not in proper sequence</th>
<th>Skills to be taught in proper sequence</th>
<th>Skills to be taught are in well detailed steps; steps are properly sequenced</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Prompt Steps Replicate Model</td>
<td>Prompt step missing one of the model steps; Prompt step taught in different sequence from model</td>
<td>Prompt step missing one step from model; Prompt step taught in different sequence from model</td>
<td>Prompt step follows model; more details could be included</td>
<td>Prompt step replicates model exactly; Same sequence and steps</td>
</tr>
<tr>
<td>3. Clarity of Questions</td>
<td>Questions/directions are limited in number; vague, or use language which students may not understand</td>
<td>Questions/directions are limited or unclear; More specifics could be included</td>
<td>Questions/Directions relate to skill being taught</td>
<td>Questions/Directions are clear and relate directly to skill being taught; language is appropriate</td>
</tr>
<tr>
<td>4. Students asked to Perform Skill</td>
<td>Students given no opportunity to perform skill</td>
<td>Students given limited opportunity to perform skill</td>
<td>Students given adequate opportunity to perform skill</td>
<td>Students given multiple opportunities to perform skill</td>
</tr>
<tr>
<td>5. Students Asked to Explain Answers</td>
<td>Students given no opportunity to explain answers</td>
<td>Students given limited opportunity to explain answers</td>
<td>Students given adequate opportunity to explain answers</td>
<td>Students given ample opportunity to explain answers, “Show or Tell me,” “Why…,”</td>
</tr>
<tr>
<td>6. Fading of Prompts (Visual, Gestural or Verbal)</td>
<td>Prompts are not decreased from most to least</td>
<td>Prompts are decreased, but inconsistently or too quickly</td>
<td>Prompts are decreased, but more fading of most to least prompts could be used</td>
<td>Prompts are decreased; detailed fading of prompts to allow students to increase independence; prompts lead to answer</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>7. Examples are appropriate for fact lessons, rule relationships and concepts</td>
<td>More than one example is wrong or missing, examples not varied</td>
<td>One example is missing or wrong, or example not varied</td>
<td>Examples are provided but could have a greater range</td>
<td>A wide range of examples is provided and includes all critical attributes. No range or narrow range form simple facts, verbal chain or discrimination</td>
</tr>
<tr>
<td>8. Non-examples are appropriate for concept or rule relationship lessons</td>
<td>More than one non-example is wrong or missing</td>
<td>One non-example is missing or non-examples are not varied</td>
<td>Non-examples are provided, could have a greater range; first non-example presented after example</td>
<td>Wide range of non-examples included; first non-example presented after examples; one critical attribute varied at a time</td>
</tr>
<tr>
<td>9. Minimal Pairs are appropriate for concept or rule relationship lessons</td>
<td>No minimal pair included</td>
<td>Minimal pair is used, but is incorrect</td>
<td>Minimal pair is used correctly</td>
<td>Minimal pair(s) well developed; one critical attribute varied at a time</td>
</tr>
</tbody>
</table>

1 2 3 4

Appendix B

DESCRIPTION OF PROMPT SELF-EVALUATION CHECKLIST
DESCRIPTION OF
PROMPT SELF-EVALUATION CHECKLIST

1. Prompt steps task analyzed
 A. Skill taught in small steps which build upon each other
 Example- When teaching the skill of single digit division, student begins by
 solving problems which have no remainder.

2. Prompt steps replicated model
 A. The model was followed with similar examples in the
 prompt step.
 Example- if teaching single digit subtraction problem with numbers
 no larger than 10, similar (but not the same) problems are included in the prompt
 step-
 model: 7-2=__, 5-1=__, 4-3=__, 6-2=__, 10-8=__, 9-4=__
 prompt: 6-1=__, 3-2=__, 8-4=__, 9-3=__, 4-2=__, 10-5=__

3. Questions asked to check for student understanding.
 A. Majority of questions require more than a yes/no response.
 Example- questions are open-ended, start with "wh" or
 "how"

4. Questions are clear and directly related to skill being taught.
 A. Questions are simple and build upon each other.
 B. Questions are based solely upon new skill or previous
 skills which were taught in this area.
 Example- If teaching multi-digit multiplication, no subtraction
 questions are asked.
 C. Questions are appropriate for the student's ability.

5. Student asked to explain answers
 A. Questions allow student to explain or show what
 He/she learned (process questions).
 Example- Questions start with "Show me how," "Tell me how,"
 etc.
 blackboard, dry erase board, etc., or uses manipulatives

6. Prompts faded (high level to low level)
 A. Prompts lead student to answer, prompts do not give answer.
 B. Most to least prompts used.
 Example- when teaching definition for complete sentences, (a group of words
 that contains a subject, verb and complete thought).
 teacher has the rule written on the board, erases it gradually, as student repeat
each part, eventually student repeats rule without referring to board.

Example- Level of verbal prompts decreased.

7. Concrete and varied examples used
 A. Examples relate to skill.
 B. A variety of examples is used.
 Example- If teaching the concept of triangles, different sizes and
 Types of triangles are introduced.
 Prompt section starts with an example.
 Example- When teaching definition of a sentence
 (a group of words that contains a subject, verb and complete
 thought)-, a sentence,-"The dog chased the car "(example) is
 introduced before a non-example- "The chair" (sentence fragment).

8. Non-examples are used for concept and rule lessons.
 A. Wide range of non-examples included.
 B. One critical attribute presented at a time.
 C. If more than one critical attribute is used, each is represented
 by examples/non-examples.
 Example- Penn State beat Miami (complete sentence). Non-example- The house,
 or ate the cake.

9. Minimal pairs are used for concept and rule lessons.
 A. At least one minimal pair is used.
 Example- The boy and girl ran (sentence. Minimal pair- The boy and girl
 (not a sentence, but similar to it)
 Example- Josh completed his homework. Minimal pair- completed his homework
Appendix C

PROMPT SELF-EVALUATION CHECKLIST SUMMARY SHEET
PROMPT SELF-EVALUATION CHECKLIST SUMMARY SHEET
CONCEPT, RULE, FACT (CIRCLE ONE)

NAME_________________________ DATE _______________

1. SKILL IN PROMPT TASK ANALYZED

2. PROMPT STEPS REPLICATED MODEL

3. QUESTIONS ARE CLEAR AND DIRECTLY RELATED TO SKILL BEING TAUGHT

4. STUDENT ASKED TO PERFORM THE SKILL

5. STUDENT ASKED TO EXPLAIN ANSWERS

6. PROMPTS FADED (HIGH LEVEL TO LOW LEVEL)

7. EXAMPLES USED

8. NON-EXAMPLES

9. MINIMAL PAIRS

AVERAGE SCORE- ______________
Appendix D

INFORMED CONSENT FORMS FOR RESEARCH STUDY
INFORMED CONSENT FORM FOR BEHAVIORAL RESEARCH STUDY

THE PENNSYLVANIA STATE UNIVERSITY

Title of project: Improving Instructional Performance in a Student Teaching Setting

Person in charge: Denise Casciato, Student Teacher Supervisor,
Doctoral Student
134 Pinecrest Lane, King of Prussia, PA 19406
(610) 337-1663
Dr. Charles Hughes, Faculty Advisor
156 Chambers Building, University Park, PA 16802
(610) 863-1699

1. This section provides an explanation of the study in which you will be participating:

 A. The study in which you will be participating is part of research intended to assess special education student teachers' effective instruction techniques. By conducting this study we hope to improve use of effective instruction in the classroom.

 B. If you agree to take part in this research, you will be asked to follow procedures which have previously been required by student teachers. We will use this data in a study.

 C. Your participation in this research will take approximately one hour (a training session). We will be collecting data on the same projects that previous special education student teachers have completed as part of the requirements of their student teaching practicum.

2. This section describes your rights as a research participant:

 A. You may ask any question about the research procedures, and these questions will be answered. Further questions should be directed to Dr. Charles Hughes.

 B. Your participation in this research is confidential. Only the person in charge will have access to your identity and to information that can be associated with your identity. In the event of publication of this research, no personally identifying information will be disclosed. To make sure your participation is confidential, you will choose a number to identify your project. The sheet which contains the student numbers will be sealed in an envelope. Your project will be matched to your name only when the intervention begins.
C. Your participation is voluntary. You are free to stop participating in the research at any time, or to decline to answer any specific questions without penalty.

3. This section indicates that you are giving your informed consent to participate in the research.

Participant:

I agree to participate in a scientific investigation of effective instruction as an authorized part of the education and research program of the Pennsylvania State University.

Because the validity of the results of the study could be affected if the purpose of the study is fully divulged to me prior to my participation, I understand that the purpose of the study can not be explained to me at this time. I understand that I will have an opportunity to receive a complete explanation of the study's purpose following my participation in the study.

I understand I will receive no compensation for participating.

I understand that my participation in this research is voluntary, and that I may withdraw from this study at any time by notifying the person in charge. I also understand that my participation may also be terminated by the investigator without my consent.

I am 18 years of age, or older, and/or a full-time student of Penn State University.

I understand that I will receive a signed copy of this consent form.

_________________________________ ________________
Signature Date

Researcher:

I certify that the informed consent procedure has been followed, and that I have answered any questions from the participant above as fully as possible.

_________________________________ ________________
Signature Date
ATTACHMENT 1
Debriefing Statement

Your methods courses in Special Education have employed the direct instruction approach which uses a model, prompt, check format. Since research has shown that a well constructed prompt step results in higher student achievement, the prompt section of your plan was seen to be an integral component of your lessons. You have been taught to use the Prompt Self-Evaluation Checklist to help you focus on the prompt section of your lesson. The purpose of this study was to help you improve your planning of the prompt step in your daily lessons. It was hoped this would enable you to develop and implement a thorough prompt step to address your students' academic needs. A summary of this research project is available at your request.
DENISE CASCIA
134 Pinecrest Lane, King of Prussia, PA 19406 610-337-1663

Education

Ph.D. Candidate, Special Education, 1999- Present
The Pennsylvania State University, State College, PA

M.Ed., Special Education, 1982
The Pennsylvania State University, State College, PA

B.S., Elementary Education and Special Education, 1974
West Chester University, West Chester, PA

Professional Experience

Special Education Supervisor
Norristown Area School District Norristown, PA
2003-present
Coordinate the planning, development and implementation of the K-4 Special Education Curriculum. Organize and conduct in-service programs for teachers. Make assignments for students eligible for special education classes. Coordinate transition to school-age programs. Assess staffing needs for teachers and paraprofessionals. Supervise district’s Speech Clinicians, Assistive Technology Team, IST teachers, and ESY summer school program.

Supervisor of Student Teachers
The Pennsylvania State University State College, PA
1988-2003
Supervise student teachers in the Norristown Area School District. Observe and confer with student teachers on a weekly basis. Evaluate their ability to apply research based practices in the classroom. Plan and implement seminars to supplement practicum experience. Meet with cooperating teachers and administrators as necessary to apprise them of program requirements.

Academic Advisor
The Pennsylvania State University State College, PA
1983-1987
Assisted Special and Elementary Education majors in planning educational and professional objectives. Consulted with students regarding degree requirements, educational policies, and administrative procedures.

Special Education Teacher
Haverford School District Haverford, PA
1982-1983
Provided instruction to students in a Resource Room setting. Designed and implemented individualized educational programs for students with learning disabilities, grades 1-5.

Special Education Teacher
Elwyn, Inc. Media, PA
1974-1979
Taught academic, self-help and social skills to students with mild to moderate disabilities, including mental retardation, emotional disturbances, and autism, ages 11 to 21.